

СКЛАД НЕФТИ И НЕФТЕПРОДУКТОВ І-ІІ КАТЕГОРИИ. ПРОТИВОПОЖАРНАЯ ЗАЩИТА. РЕЗЕРВУАРНЫЕ ПАРКИ

КОНЦЕПЦИЯ КОМПЛЕКСНОЙ СИСТЕМЫ ПЕННОГО ПОЖАРОТУШЕНИЯ И ВОДЯНОГО ОХЛАЖДЕНИЯ

НАЗНАЧЕНИЕ КОНЦЕПЦИИ

- ✓ Разработка и обоснование основных технических решений.
- Согласование основных технических решений с заказчиком.
- Применение для разработки технического задания на проектирование.

АЛГОРИТМ РАЗРАБОТКИ КОНЦЕПЦИИ

Анализ исходных данных

Определение объектов защиты и типа систем (установок) пожаротушения и водяного охлаждения

Обоснование методов и способов пенного пожаротушения резервуаров

Выбор и обоснование типа и характеристик пенообразователя

Выбор и обоснование основного оборудования и системы хранения и дозирования пенообразователя

Обоснование технических решений по структуре комплексной системы пенного пожаротушения и водяного охлаждения

Согласование

Включение основных положений концепции в техническое задание на проектирование

ПОЖНЕФТЕХИМ © 2004-2019

СОДЕРЖАНИЕ

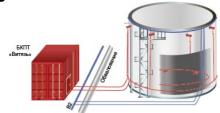
- 1. Исходные данные для концепции
- 2. Определение объектов защиты и типа систем (установок) пожаротушения и водяного охлаждения
- 3. Обоснование методов и способов пенного пожаротушения резервуаров
- 3.1. Нормативные требования
- 3.2. Сравнение
- 3.3. Сравнение. Основные выводы.
- 4. Выбор и обоснование типа и характеристик пенообразователя
- 4.1. Классификация пенообразователей
- 4.2. Выбор пенообразователя по типу согласно ГОСТ 27331-87 и ГОСТ Р 50588
- 4.3. Выбор пенообразователя по кратности пены
- 4.4. Выбор пенообразователя по объемной концентрации
- 4.5. Выбор пенообразователя по температуре замерзания
- 4.6. Примеры выбора пенообразователя
- 5. Выбор и обоснование типа и характеристик основного оборудования
- 6. Выбор и обоснование структуры комплексной системы пенного пожаротушения и водяного охлаждения
- 6.1. Ранее применяемая структура комплексной системы пенного пожаротушения и водяного охлаждения
- 6.2. Современная структура комплексной системы пенного пожаротушения и водяного охлаждения
- 7. Пример концепции
- 7.1. Исходные данные
- 7.2. Основные технические решения
- 8. Пример технического задания на проектирование на основе согласованной концепции

1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ КОНЦЕПЦИИ

Основные исходные данные для разработки концепции:

- ✓ схема генерального плана (возможна предварительная);
- ✓ тип (РВС, РВСП, РВСПК), номинальный объем резервуаров, диаметр, высота;
- ✓ характеристики нефти и нефтепродуктов (тип, температура вспышки, наличие «парафинистых» отложений, содержание полярных добавок и т.п.);
- ✓ характеристики противопожарного водопровода (планируемые проектные решения: резервуары для воды, сеть В2, насосная станция, решения по пополнению запасов воды в резервуарах).

2. ОПРЕДЕЛЕНИЕ ОБЪЕКТОВ ЗАЩИТЫ И ТИПА СИСТЕМ (УСТАНОВОК) ПОЖАРОТУШЕНИЯ И ВОДЯНОГО ОХЛАЖДЕНИЯ. НОРМАТИВНЫЕ ТРЕБОВАНИЯ



Наименование объекта

Тип системы пенного пожаротушения и водяного охлаждения согласно СП 155.13130 «Склады нефти и нефтепродуктов. Требования пожарной безопасности».

Наземные резервуары 5000 м³ и более

Автоматическая система пенного пожаротушения (п.13.2.3)

Стационарные (не автоматические) установки охлаждения (кольца орошения в верхнем поясе резервуаров) с ручным пуском (п.13.2.8).

Наземные резервуары от 1000 до 5000 м³

Генераторы пены, пеносливы с сухими трубопроводами (с соединительными головками и заглушками), выведенными за обвалование (п.13.2.6).

Водяное охлаждение мобильными средствами пожаротушения от пожарных гидрантов или резервуаров (п.13.2.8).

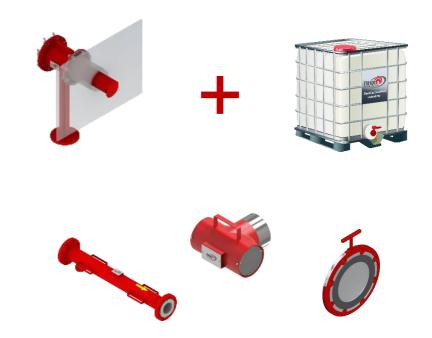
Дополнительные решения (рекомендации) Пожнефтехим

Для резервуаров 5000 м³ и более – автоматические установки водяного охлаждения.

Присоединение систем резервуаров объемом от 1000 до 5000 м³ к стационарной систем пенного пожаротушения с обеспечением дистанционного пуска (или автоматического).

ПОЖНЕФТЕХИМ © 2004-2019

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.1. НОРМАТИВНЫЕ ТРЕБОВАНИЯ



Согласно СП 155.13130 (приложение А, таблицы А.1 и А.2) допускается два метода пенного пожаротушения.

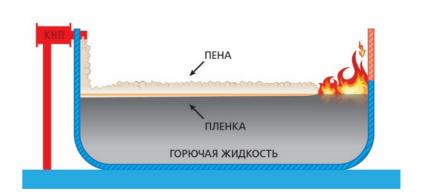
ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S (СП 155.13130, приложение A, таблица A.1)

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF (СП 155.13130, приложение A, таблица A.2)

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.2. СРАВНЕНИЕ (1)


ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S (СП 155.13130, приложение A, таблица A.1)

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF (СП 155.13130, приложение A, таблица A.2)


Сущность методов тушения

Технология пожаротушения, разработанная в 70-х годах в СССР

Предусмотрен требованиями СП 155.13130

Технология пожаротушения применяемая в России с 2000-х годов, широко распространена в международной практике Предусмотрен требованиями СП 155.13130, NFPA 11

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.2. СРАВНЕНИЕ (2)

ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S (СП 155.13130, приложение A, таблица A.1)

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF (СП 155.13130, приложение A, таблица A.2)

Основное отличие

- Быстрое разрушение слоя пены и нарушение изолирующей способности
- Как следствие, неэффективное тушение, возможность повторных возгораний и взрывов после ликвидации горения

- + Максимальная изолирующая способность, эффективное тушение. Исключение «не дотушивания», повторных возгораний и взрывов после ликвидации горения.
- + Возможность применения элементов системы пожаротушения для предотвращения пожаров и взрывов при разливах нефти и нефтепродуктов.
- + Возможность применения элементов системы пожаротушения для обеспечения безопасных условий работ при ликвидации последствий разливов нефти и нефтепродуктов.

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.2. СРАВНЕНИЕ (3)

ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S (СП 155.13130, приложение A, таблица A.1)

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF (СП 155.13130, приложение A, таблица A.2)

Сравнение оборудования для подачи пены на поверхность горючего

ГПСС – генератор пены средней кратности стационарный (разработка 70-х годов)

- Не взрывоустойчив (при незначительной деформации крышки разрушение пенообразующей сетки, прочность крепления фланца не нормируется, примерно 0,1 МПа).
- **Не термоустойчив** (возможно прогорание пенообразующей сетки, струеобразующий элемент выполнен из пластика).
- Не совершенство конструкции и производства (проверочные испытания показывают, что порядка 25-30% пены не попадает в зону горения).
- «Жесткий» способ подачи пены на поверхность горючего (возможно перемешивание пены с горючим).

КНП – Камера низкократной пены «Вега»

- **+ Взрывоустойчива** (не имеет пенообразующей сетки, прочность крепления фланца 0,6 МПа и более).
- **+ Термоустойчива** (не имеет горючих и не термостойких элементов).
- + «Мягкий» способ подачи пены на поверхность горючего в виде широкого веера через стенку резервуара.

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.2. СРАВНЕНИЕ (4)

ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S (СП 155.13130, приложение A, таблица A.1)

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF (СП 155.13130, приложение A, таблица A.2)

Сравнение оборудования для подачи пены в слой горючего

Не применяется.

Возможно применение технологии пожаротушения с подачей пены в слой жидкости. Исключает выход из строя установки пожаротушения при разрушении верхнего пояса резервуара при взрыве (рекомендуется для резервуаров объемом 10000 м³ и более).

3. ОБОСНОВАНИЕ МЕТОДОВ И СПОСОБОВ ПЕННОГО ПОЖАРОТУШЕНИЯ РЕЗЕРВУАРОВ 3.3. СРАВНЕНИЕ. ОСНОВНЫЕ ВЫВОДЫ

ОСНОВНЫЕ ВЫВОДЫ ПО РЕЗУЛЬТАТАМ СРАВНЕНИЯ

ТУШЕНИЕ ПЕНОЙ СРЕДНЕЙ КРАТНОСТИ НА ОСНОВЕ УГЛЕВОДОРОДНОГО СИНТЕТИЧЕСКОГО ПЕНООБРАЗОВАТЕЛЯ ТИП S ЯВЛЯЕТСЯ УСТАРЕВШИМ МЕТОДОМ ТУШЕНИЯ

НЕ РЕКОМЕНДУЕТСЯ К ПРИМЕНЕНИЮ

ТУШЕНИЕ ПЕНОЙ НИЗКОЙ КРАТНОСТИ НА ОСНОВЕ ФТОРСИНТЕТИЧЕСКОГО ПЛЕНКООБРАЗУЮЩЕГО ПЕНООБРАЗОВАТЕЛЯ КЛАССА AFFF ЯВЛЯЕТСЯ СОВРЕМЕННЫМ МЕТОДОМ ТУШЕНИЯ, СООТВЕТСТВУЮЩИМ РОССИЙСКИМ И МЕЖДУНАРОДНЫМ СТАНДАРТАМ

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ 4.1. КЛАССИФИКАЦИЯ ПЕНООБРАЗОВАТЕЛЕЙ

Пенообразователи для тушения пожаров подразделяются:

- по типу;
- по кратности пены;
- по объемной концентрации;
- по температуре замерзания.

ПОЖНЕФТЕХИМ

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ 4.2. ВЫБОР ПЕНООБРАЗОВАТЕЛЯ ПО ТИПУ СОГЛАСНО ГОСТ Р 50588

Вид горючей жидкости		Тип применяемого пенообразователя	
Нефть и нефтепродукты . Подкласс пожара В1 - Горение жидких веществ, нерастворимых в воде		Синтетический фторсодержащий пленкообразующий пенообразователь для тушения не полярных жидкостей – тип AFFF	
Нефтепродукты . Подкласс пожара В2 - Горение жидких веществ, растворимых в воде	AFFF/AR	Синтетический фторсодержащий пленкообразующий спиртоустойчивый пенообразователь целевого назначения для тушения водорастворимых и водонерастворимых горючих жидкостей – тип AFFF/AR	
Смеси. Нефтепродукты, не растворимые в воде, но содержащие полярные жидкости 5 % и более	AFFF/AR	Синтетический фторсодержащий пленкообразующий спиртоустойчивый пенообразователь целевого назначения для тушения водорастворимых и водонерастворимых горючих жидкостей – тип AFFF/AR.	
Нефть и нефтепродукты. На объектах с повышенными экологическими требованиями.	S/AR	Синтетический спиртоустойчивый пенообразователь целевого назначения без содержания фторированного поверхностно-активного вещества для тушения водорастворимых и водонерастворимых горючих жидкостей – тип S/AR.	

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ 4.3. ВЫБОР ПЕНООБРАЗОВАТЕЛЯ ПО КРАТНОСТИ

Пенообразователи для получения пены низкой кратности (Н)

Пенообразователи для получения пены низкой, средней и высокой кратности (НСВ)

Выбор пенообразователя по кратности пены осуществляется по выбранному методу тушения согласно п. 2, а также с учетом выбранного оборудования для подачи пены в защищаемую зону.

Таким образом, необходим пенообразователь для получения пены низкой кратности (Н).

/

ПОЖНЕФТЕХИМ © 2004-2019

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ

4.4. ВЫБОР ПЕНООБРАЗОВАТЕЛЯ ПО ОБЪЕМНОЙ КОНЦЕНТРАЦИИ

Согласно ГОСТ Р 50588-2012 и производимым пенообразователя рабочая концентрация пенообразователя может быть 1, 3 или 6%. Чем меньше заявленная объемная концентрация, тем более концентрированный пенообразователь.

Характеристики рабочего раствора, полученного из пенообразователей разных объемных концентраций, но одного типа, будут одинаковые.

Получение рабочего раствора из 1% пенообразователя

Получение рабочего раствора из 3% пенообразователя

Получение рабочего раствора из 6% пенообразователя

Рабочий раствор пенообразователя

Наиболее экономически выгодная объемная концентрация 1%.

Чем меньше объемная концентрация, тем меньше нужно пенообразователя, при этом сокращаются объемы емкостей систем хранения пенообразователя, которые в свою очередь влияют на площади пенодозаторных. Также нужно учитывать снижение затрат на транспортировку и трудоемкость работ.

Но не все типы пенообразователей возможно сделать с минимальной объемной концентрацией - 1% -н.

Если нет выбранного пенообразователя 1%, то выбирается 3%. Если нет 3%, то выбирается 6%.

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ

4.5. ВЫБОР ПЕНООБРАЗОВАТЕЛЯ ПО ТЕМПЕРАТУРЕ ЗАМЕРЗАНИЯ

Емкости пенообразователя, как правило, устанавливаются в отапливаемом помещении. При транспортировке пенообразователь может замерзать, но при оттаивании свойств не теряет. Поэтому выбирается минимально возможная температура замерзания (для AFFF и AFFF/AR это минус 15 градусов).

Более низкая температура выбирается, если пенообразователь планируется для применения передвижной пожарной техникой путем его подвоза к месту пожара.

WHEATEXIM © 2004-2014

повышенными

требованиями

экологическими

4. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ПЕНООБРАЗОВАТЕЛЯ 4.6. ПРИМЕРЫ ВЫБОРА ПЕНООБРАЗОВАТЕЛЯ

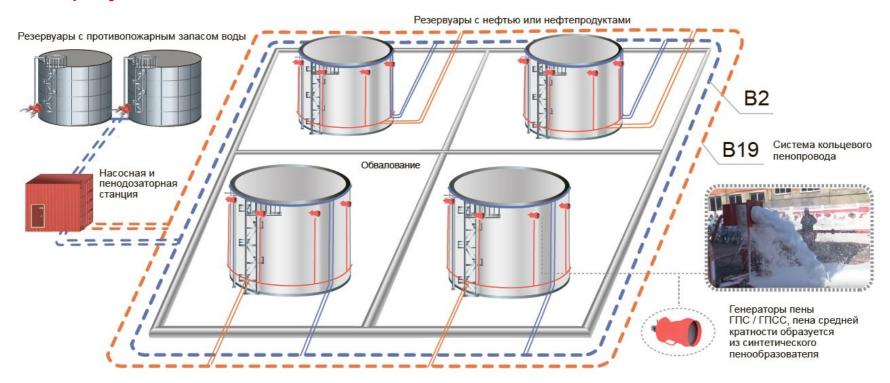
Вид горючей жидкости	Оптимальный тип применяемого пенообразователя
Резервуарный парк. Нефть и нефтепродукты, не растворимые в воде	 AFFF H 1% минус 15 согласно ГОСТ Р 50588 ✓ AFFF – синтетический фторсодержащий пленкообразующий пенообразователь для тушения не полярных жидкостей ✓ H – для получения пены низкой кратности ✓ 1% – объемная концентрация пенообразователя в растворе ✓ минус 15 – температура замерзания
Резервуарный парк. Нефтепродукты, растворимые в воде	АFFF/AR Н 3% минус 15 согласно ГОСТ Р 50588 ✓ AFFF/AR – синтетический фторсодержащий пленкообразующий спиртоустойчивый пенообразователь целевого назначения для тушения водорастворимых и водонерастворимых горючих жидкостей ✓ Н – для получения пены низкой кратности ✓ 3% – объемная концентрация пенообразователя в растворе ✓ минус 15 – температура замерзания Примечание: AFFF/AR выпускается только объемной концентрацией 3% и 6%.
Резервуарный парк. Нефтепродукты, не растворимые в воде, но содержащие полярные жидкости 5 % и более	 AFFF/AR H 3% минус 15 согласно ГОСТ Р 50588 ✓ AFFF/AR – синтетический фторсодержащий пленкообразующий спиртоустойчивый пенообразователь целевого назначения для тушения водорастворимых и водонерастворимых горючих жидкостей ✓ Н – для получения пены низкой кратности ✓ 3% – объемная концентрация пенообразователя в растворе ✓ минус 15 – температура замерзания Примечание: AFFF/AR выпускается только объемной концентрацией 3% и 6%.
Нефть и нефтепродукты. На объектах с	

Примечание: S/AR выпускается только с 6% объемной концентрацией.

и водонерастворимых горючих жидкостей

содержания фторированного поверхностно-активного вещества для тушения водорастворимых

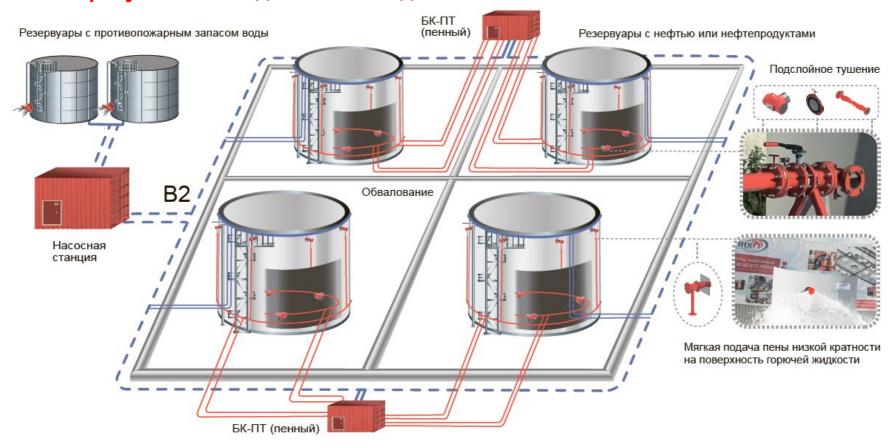
5. ВЫБОР И ОБОСНОВАНИЕ ТИПА И ХАРАКТЕРИСТИК ОСНОВНОГО ОБОРУДОВАНИЯ


Наименование оборудование	Назначение	Тип и основные характеристики КНП тепловзрывоустойчивая, веерного типа. Прочность предохранительной мембраны – не менее 0,1 МПа. Конструкция должна обеспечивать испытания без подачи пены в резервуар.	
Камера низкократной пены (КНП)	Устанавливаются в верхнем поясе резервуаров для подачи низкократной пленкообразующей пены на поверхность горючего		
	одслойного пожаротушения (для резервуар родуктов с содержанием полярных жидкосте	ов объемом более 10000 м ³ , за исключением ей, масел и мазута):	
- высоконапорный пеногенератор (ВПГ)	Для получения низкократной пленкообразующей пены и ее подачи в слой горючего в условиях противодавления	ΓΟCT P 53290-2009	
- мембрана разрывная (МР)	Для удержания столба горючего в период эксплуатации, пропуска пены после вскрытия при подачи пены от ВПГ в резервуар	Давление со стороны резервуара, не менее 0,3 МПа. Стойкость при переменном давлении (не менее 1000 циклов). Давление открытия не более 0,03 МПа.	
- насадки подслойные (ПН)	Для обеспечения нормативной скорости подачи пены в слой для недопущения попадания в пенопроводы «парафинистых» отложений и других посторонних включений	Скорость не более 3 м/с К герм. не более 0,00016 кг/мин	
Система хранения и дозирования пенообразователя (СХДП)	Хранение и дозирование при выборе пенообразователя AFFF Хранение и дозирование при выборе пенообразователя AFFF/AR	СХДП в составе: ✓ турбинный осевой дозатор; ✓ емкость для хранения пенообразователя; ✓ трубопроводная обвязка. СХДП – бак-дозатор, оснащенный шкафом управления для контроля уровня	
Пожарный фильтр универсальный	Защита СХДП и оборудования от загрязнения	пенообразователя. Пожарный фильтр универсальный с узлом для технического обслуживания без снятия с трубопровода, приспособленный для промывки трубопроводов в период эксплуатации.	

ПОЖНЕФТЕХИМ © 2004-2019

6. ВЫБОР И ОБОСНОВАНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СИСТЕМЫ ПЕННОГО ПОЖАРОТУШЕНИЯ И ВОДЯНОГО ОХЛАЖДЕНИЯ

6.1. Ранее применяемая структура комплексной системы пенного пожаротушения и водяного охлаждения


Разработана и применяется с 70-х годов. НЕДОСТАТКИ:

- ✓ до 90-х годов в России выпускались «биологически жесткие пенообразователи», что позволяло хранить раствор пенообразователя в заполненных сетях (не более года);
- ✓ с 90-х годов в России производятся «биологически мягкие» пенообразователи, которые теряют огнетушащую способность при взаимодействии с водой в течение месяца;
- ✓ как следствие, системы пенного пожаротушения теряют эффективность через месяц после пуска в эксплуатацию;
- ✓ при подаче не огнетушащего раствора в нефть или нефтепродукт возможны выброс или вскипание;
- ✓ требуется утилизация раствора пенообразователя с вывозом и сжиганием;
- ✓ не соответствует п.А.10 СП 155.13130.

6. ВЫБОР И ОБОСНОВАНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СИСТЕМЫ ПЕННОГО ПОЖАРОТУШЕНИЯ И ВОДЯНОГО ОХЛАЖДЕНИЯ

6.2. Современная структура комплексной системы пенного пожаротушения и водяного охлаждения

Разработана и применяется с 2000-х годов. ДОСТОИНСТВА:

- ✓ соответствует п.А.10 СП 155.13130, рекомендациям ВНИИПО МЧС РФ;
- ✓ пенообразователь хранится в концентрированном виде в течение более 10 лет и более без замены;
- ✓ высокая огнетушащая способность свежего раствора пенообразователя;
- ✓ размещение запорной арматуры в закрытых помещениях (снижается риск затопления при размещении в колодцах);
- ✓ минимальная трудоемкость при техническом обслуживании системы пожаротушения.

7. ПРИМЕР КОНЦЕПЦИИ (1)

7.1 Исходные данные

Склад нефти и нефтепродуктов 1 категории. Резервуары типа РВСП для хранения нефти, объемом 20000 – 4 шт., объемом 5000 – 10 шт.

Водоснабжение предусматривается от двух наземных резервуаров воды.

7.2 Основные технические решения

7.2.1 Для резервуаров типа РВСП для хранения нефти объемом 5000 м³ и 20000 м³ в соответствии с СП 155.13130 (раздел 13) предлагаются:

- ✓ автоматические системы пенного пожаротушения (п.13.2.3);
- ✓ автоматические установки водяного охлаждения (п.13.2.8), автоматический пуск как дополнительное мероприятие с учетом удаленности пожарных подразделений).

7.2.2 В соответствии с таблицей А.2 предусматривается тушение пеной низкой кратности на основе фторсинтетического пленкообразующего пенообразователя тип AFFF (СП 155.13130, приложение A, таблица A.2), а именно:

- ✓ для резервуаров 5000 м³ подача пленкообразующей пены сверху предусматривается на поверхность горючей жидкости;
- ✓ для резервуаров 20000 м³ подача пленкообразующей пены сверху предусматривается на поверхность горючей жидкости, а также с учетом п. А.1 применяется подслойный способ тушения как дополнительный.

Данные решения соответствуют СП 155.13130 и международному стандарту NFPA 11a. Основные преимущества предлагаемых решений:

- ✓ максимальная изолирующая способность, эффективное тушение;
- ✓ исключение повторных возгораний и взрывов после ликвидации горения;
- ✓ возможность применения элементов системы пожаротушения для предотвращения пожаров и взрывов при разливах нефти и нефтепродуктов;
- ✓ возможность применения элементов системы пожаротушения для обеспечения безопасных условий работы при ликвидации последствий разливов нефти и нефтепродуктов.

Применение дополнительного подслойного способа подачи для резервуаров объемом 20000 м³ обуславливается повышенной пожарной опасностью сооружений в связи:

- ✓ со значительным объемом хранения нефти;
- ✓ возможностью выхода из строя системы подачи пены сверху на поверхность горючего;
- ✓ ограниченными тактико-техническими возможностями пожарно-спасательных подразделений.

7. ПРИМЕР КОНЦЕПЦИИ (2)

7.2.3. В качестве огнетушащего вещества предлагается применение пены низкой кратности, полученной из раствора пенообразователя на основе фторсинтетического пленкообразующего пенообразователя типа AFFF.

С учетом предлагаемых способов тушения, обеспечения экономической эффективности и условий применения предусматривается следующий тип пенообразователя:

AFFF H 1% минус 15, ГОСТ Р 50588 и ГОСТ Р 53280.2-2010 (часть 2), где:

- ✓ AFFF синтетический фторсодержащий пленкообразующий пенообразователь для тушения не полярных жидкостей;
- ✓ Н для получения пены низкой кратности;
- ✓ 1% объемная концентрация пенообразователя в растворе;
- ✓ минус 15 температура замерзания.

7.2.4 Для реализации систем пенного пожаротушения предлагается применение следующего основного оборудования:

Наименование оборудование		Тип и основные характеристики
Для резервуаров типа РВСП-5000 м ³ и РВСП-2000 м ³ Камера низкократной пены (КНП)	ппенкообразующей пены на	КНП тепловзрывоустойчивая, веерного типа. Конструкция должна обеспечивать испытания без подачи пены в резервуар.

Комплект оборудования для подслойного пожаротушения (для резервуаров объемом 20000 м³):

- высоконапорный пеногенератор (ВПГ)	Для получения низкократной пленкообразующей пены и ее подачи в слой горючего в условиях противодавления	ΓΟCT P 53290-2009	
- мембрана разрывная (МР)	Для удержания столба горючего в период эксплуатации, пропуска пены после вскрытия при подачи пены от ВПГ в резервуар	Давление со стороны резервуара, не менее 0,3 МПа Стойкость при переменном давлении (не менее 1000 циклов). Давление открытия не более 0,03 МПа.	

ПОЖНЕФТЕХИМ © 2004-2019

7. ПРИМЕР КОНЦЕПЦИИ (3)

	Для обеспечения нормативной скорости подачи пены в слой. Для недопущения	Скорость не более 3 м/с	
- насадки подслойные (ПН)	попадания в пенопроводы «парафинистых» отложений и других посторонних включений	К герм. не более 0,00016 кг/мин	
Система хранения и дозирования пенообразователя (СХДП)	Хранение и дозирование при выборе пенообразователя AFFF	 СХДП в составе: ✓ турбинный осевой дозатор; ✓ емкость для хранения пенообразователя; ✓ трубопроводная обвязка. 	
Пожарный фильтр универсальный	Защита СХДП и оборудования от загрязнения	Пожарный фильтр универсальный с узлом для технического обслуживания без снятия с трубопровода, приспособленный для промывки трубопроводов в период эксплуатации.	

7.2.5. Структура комплексной системы пенного пожаротушения резервуарных парков

В состав комплексной системы пенного пожаротушения резервуарных парков должны входить:

- ✓ системы пенного пожаротушения резервуаров;
- ✓ пункты хранения и дозирования пенообразователя, расположенные у защищаемых объектов;
- ✓ противопожарный водопровод В2 для подачи воды на охлаждение, в пожарные гидранты, а также для обеспечения водой пункты хранения и дозирования пенообразователя;
- ✓ общая насосная станция пожаротушения;
- ✓ резервуары противопожарного запаса воды.

Пункты хранения и дозирования пенообразователя, расположенные у защищаемых объектов, не предусматривают постоянных рабочих мест, не являются складами пенообразователя и пожарно-технического вооружения, а также насосными пожаротушения. Расстояния от пунктов до резервуаров предусматривается согласно п.6.5 СП 155.13130 (таблица 3, п.11) – не менее 20 метров.

7. ПРИМЕР КОНЦЕПЦИИ (4)

Структура исключает применение заполненной сети растворопроводов, так как:

- ✓ с 90-х годов в России производятся «биологически мягкие» пенообразователи, которые теряют огнетушащую способность при взаимодействии с водой в течение месяца;
- ✓ как следствие, системы пенного пожаротушения теряют эффективность через месяц с момента пуска в эксплуатацию;
- ✓ при подаче не огнетушащего раствора в нефть или нефтепродукт возможны выброс или вскипание;
- ✓ требуется утилизация раствора пенообразователя с вывозом и сжиганием;
- ✓ не соответствует п.А.10 СП 155.13130.

Преимущества предлагаемой структуры:

- ✓ соответствует п.А.10 СП 155.13130, рекомендациям ВНИИПО МЧС РФ;
- ✓ пенообразователь хранится в концентрированном виде в течение более 10 лет и более без замены;
- ✓ высокая огнетушащая способность свежего раствора пенообразователя;
- ✓ размещение запорной арматуры в закрытых помещениях (снижается риск затопления при размещении в колодцах);
- ✓ минимальная трудоемкость при техническом обслуживании системы пожаротушения.

8. ПРИМЕР ТЕХНИЧЕСКОГО ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ НА ОСНОВЕ СОГЛАСОВАННОЙ КОНЦЕПЦИИ (1)

Nº	3. Вид строительства 4. Стадийность проектирования		ований	Содержание требований	
1.				Комплексная система пенного пожаротушения и водяного охлаждения склада нефти и нефтепродуктов 1 категории, резервуарные парки Задание на проектирование Новое строительство Проектная документация Руководствоваться нормами, принятыми на территории Российской	
2. 3. 4. 5.			ОТ		
6.	•	мативно-техническая база ем разработки проектной документации		Федерации Проектная документация согласно Постановлению Правительства №87, достаточная для согласования в органах экспертизы.	
6.1.	охнаждения скнада нести и		В соотве предусм	етствии с Концепцией №, от «»20 г. отреть:	
	технические соответствии с СП 155.1313		Π 155.131	а РВСП для хранения нефти объемом 5000 м ³ и 20000 м ³ в 39 (раздел 13) предлагаются: пенного пожаротушения (п.13.2.3);	
			✓ автоматические установки водяного охлаждения (п.13.2.8, автоматический пуск как дополнительное мероприятие с учетом удаленности пожарных подразделений).		
	пленкообразуюц именно:		его пенос	ние пеной низкой кратности на основе фторсинтетического образователя тип AFFF (СП 155.13130, приложение A, таблица A.2), а подачей пленкообразующей пены сверху на поверхность горючей	

жидкости, а также дополнительным подслойным способом тушения.

✓ для резервуаров 20000 м³ – подачей пленкообразующей пены сверху на поверхность горючей

ПОЖНЕФТЕХИМ © 2004-2019

8. ПРИМЕР ТЕХНИЧЕСКОГО ЗАДАНИЯ НА ПРОЕКТИРОВАНИЕ НА ОСНОВЕ СОГЛАСОВАННОЙ КОНЦЕПЦИИ (2)

6.1. Основные технические требования

6.1.3. В качестве огнетушащего вещества предусмотреть применение пены низкой кратности, полученной из раствора пенообразователя на основе фторсинтетического пленкообразующего пенообразователя типа

(продолжение)

AFFF H 1% минус 15, ГОСТ Р 50588 и ГОСТ Р 53280.2-2010 (часть 2).

6.1.4. Применить следующие типы оборудования:

- ✓ камера низкократной пены (КНП) (тепловзрывоустойчивая, веерного типа, прочность мембраны не менее 0,1 МПа, конструкция должна обеспечивать испытания без подачи пены в резервуар);
- ✓ высоконапорный пеногенератор (ВПГ) ГОСТ Р 53290-2009;
- ✓ мембрана разрывная (МР) для подслойного тушения (давление со стороны резервуара, не менее 0,3 МПа, стойкость при переменном давлении (не менее 1000 циклов), давление открытия не более 0,03 МПа);
- √ насадки подслойные (ПН) (скорость не более 3 м/с; с К герм. не более 0,00016 кг/мин);
- ✓ системы хранения и дозирования пенообразователя (СХДП) в составе: турбинный осевой дозатор, емкость для хранения пенообразователя, трубопроводная обвязка;
- ✓ пожарные фильтры универсальные с узлом для технического обслуживания без снятия с трубопровода, приспособленный для промывки трубопроводов в период эксплуатации.

6.1.5. В составе комплексной системы пенного пожаротушения резервуарных парков предусмотреть:

- ✓ системы пенного пожаротушения резервуаров;
- ✓ пункты хранения и дозирования пенообразователя, расположенные у защищаемых объектов;
- ✓ противопожарный водопровод B2, для подачи воды на охлаждение, в пожарные гидранты, а также для обеспечения водой пункты хранения и дозирования пенообразователя;
- ✓ общая насосная станция пожаротушения;
- ✓ резервуары противопожарного запаса воды.

АЛГОРИТМ РАБОТЫ

Взаимодействие Пожнефтехим и компании-заказчика

Запрос Заказчика на установку пожаротушения

Исходные данные: геометрические размеры, характеристики воздушного судна, характеристики водоснабжения объекта, планируемое место размещения насосных агрегатов, бака-дозатора с пенообразователем – помещение / отдельный блок-бокс)

Разработка Концепции АУПТ

Спецификации основного оборудования и пенообразователя, коммерческого предложения. Согласование с Заказчиком.

Выбор проектной или проектно-строительной организации

Проектную организацию определяет Заказчик, для разработки проектной документации Пожнефтехим может предложить услуги своих партнеров, рекомендуется привлечение местных строительно-монтажных и проектных организаций.

Сопровождение проектных работ

Разработка базового проекта, предоставление его проектной организации, разработка рабочей документации на систему хранения и дозирования, предоставление монтажных чертежей и т.д.

Комплексная поставка установки пожаротушения (комплекса основного оборудования и пенообразователя)

Шефмонтаж, участие в пусконаладочных работах, обучение персонала

Участие в предварительных и приемочных испытаниях.

Сопровождение техобслуживания

Вопросы?

Проектирование систем пожаротушения, типовые решения	Юрий Потеряев, заместитель по развитию u.poteryaev@pozhneftehim.ru
Пожарное оборудование, оборудование для пожаротушения	Сергей Выприцкий, руководитель проектного отдела +7 (499) 703 01 32, доб.153
Пенообразователи «Аквафом» производства Пожнефтехим	Татьяна Потапенко, руководитель пенного проекта +7 (499) 703 01 32, доб.172
Специальные технические условия, раздел МОПБ проектной документации, Концепции ППЗ	Сергей Титенков, руководитель нормативно- технического отдела +7 (499) 703 01 32, доб.159

mail@pnx-spb.ru

www.pnx-spb.ru

+7 (499) 703 01 32 (Москва) +7 (812) 309 91 09 (Санкт-Петербург)

